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Abstract 

A critical survey of the literature has revealed that recent 
structure determinations and optical data are available for 
only three calcite-type carbonates: calcite, rhodochrosite and 
magnesite. For these structures, the limitations of the point- 
dipole approximation are discussed. 

The point-dipole model was introduced by Bragg (1924) to 
explain quantitatively the birefringence of calcite and 
aragonite with respect to the crystal structures. In this 
approach optical anisotropy arises from differences in 
dipole-dipole coupling along different crystallographic direc- 
tions. This source of anisotropy is connected with the 
Lorentz-factor tensor. In addition, however, optical anisot- 
ropy may arise from an intrinsic anisotropy in the constituent 
ions. In this case electronic polarizability tensors should be 
considered. 

In order to investigate the relation between atomic 
arrangement and double refraction, the crystals of carbon- 
ates have been used repeatedly. The latest studies are those 
given by Isherwood & James (1976) and Pohl (1978). In his 
paper Pohl (1978) has developed a method to determine the 
electronic polarizabilities of ions from structural and optical 
data by a least-squares fit. The method is based on Bragg's 
(1924) model of point dipoles and on an exact calculation of 
Lorentz-factor tensors. This model satisfactorily accounts 
for the double refraction of aragonite-type carbonates. In the 
present paper we discuss the application of the method to 
calcite-type carbonates. 

Structural parameters of only three calcite-type carbon- 
ates have been determined: calcite (Chessin, Hamilton & 
Post, 1965), rhodochrosite (Brown & Forsyth, 1967) and 
magnesite (Oh, Morikawa, Iwai & Aoki, 1973). Optical 
constants are given by Winchell & Winchell (1964). Appli- 
cation of Pohl's (1978) method yields the electronic polariz- 

Table 1. Calcite-type carbonates: electronic polarizabilities 
of ions (in A 3) 

Compound O-.¢lltlo n 0.02- 

CaCo 3 2.0 19.5 
MnCO 3 0.2 20.1 
MgCO 3 --1.9 17.1 
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abilities listed in Table 1. Indications of deficiencies in the 
method are the negative value of the polarizability of Mg 2+ 
and the low values obtained for the Mn 2÷ and Ca 2÷ ions. 

The strong double refraction displayed by calcite-type 
carbonates cannot be explained by isotropic polarizabilities. 
Based on Bragg's (1924) ideas, the birefringence arises from 
the oxygens within the isolated COl-  groups: the stronger 
the birefringence the stronger the influence of the O z- ions on 
each other. Strengthening of the oxygen interaction can take 
place in two ways. Firstly, the distance between the carbon 
and oxygen can be diminished. Secondly, the polarizability of 
the oxygen ion can be increased. Since the C - O  distance is 
fixed according to the structure determination, only an 
increased polarizability of the 0 2- ion remains. However, 
this results in an increased mean refractivity which in return 
is compensated by a smaller polarizability of the cation, thus 
explaining the above results. 

To overcome the shortcomings encountered with the 
Bragg model of point dipoles, two improvements may be 
considered. Firstly, the point dipoles can be positioned 
outside the atomic centers, because the outer electrons 
responsible for the optical effects may have a center of 
gravity distinct from that determined by X-rays. Secondly, 
an intrinsic anisotropy can be allocated to the polarizability 
of the ions. Both of these improvements involve the intro- 
cluction of at least one extra parameter. Thus the number of 
adjustable parameters will exceed the number of experi- 
mentally known refractive indices. This difficulty may be 
handled by adopting polarizability data for the cation from 
other investigations. There are however additional difficulties 
with every improved model, leading to the conclusion that 
the problem of too many coefficients and not enough data 
cannot be easily removed. As pointed out by a number of 
authors (Spangenberg, 1923; Fajans & Joos, 1924; Born & 
Heisenberg, 1924; Bragg, 1925; Batsanov, 1966; Pohl, 
1978; Pohl, Eck & Klaska, 1978) the polarizability of the 
anions varies with the size of the cation. Specifically, small 
cations tend to reduce the polarizability of the anions. This is 
the reason why Lawless & Devries (1964) had to exclude 
MgCO 3 when they determined the least-squares oxygen 
polarizability ellipsoid in fitting the refractive indices of 
carbonate minerals. In his study, Lo (1973) computed the 
polarizabilities of the planar nitrate, carbonate and borate 
anions in crystals and concluded that the deduced polariz- 
ability values are strongly dependent on the crystalline 
environment. 
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Abstract 

A method for finding the strongest starting set of reflections 
for multisolution direct methods is proposed and compared 
with the Convergence Method of Germain, Main & 
Woolfson [Acta Cryst. (1970), B26, 274-285]. 

The program MULTAN uses a powerful procedure called 
the 'Convergence Method' (Germain, Main & Woolfson, 
1970) to determine starting sets of reflections for multi- 
solution direct methods and to determine the path of phase 
determination• While the Convergence Method (CM) has 
been described as a method for finding the strongest set of 
starting reflections, in fact it finds the least weak by 
eliminating the weakest reflection at each step of the iterative 
procedure• The formulation presented here directly seeks the 
strongest starting set of reflections. An additional advantage 
of this formulation is that at each stage the information 
required to build trees for phasing is entirely available after 
the starting set has been chosen• In the CM, trees must be 
constructed separately for each starting set. 

Form the matrix 

1 

where the ~oj are the phase angles for the reflections, j ,  that 
participate in phase relationship i, where the matrix is 
summed over all the relationships, and where l, Vl is the 
weight associated with relationship i. The weights may be 
calculated by any appropriate method for evaluating the 
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relative importance of the relationship; for phase triplets a 
possible choice of weights is the x of Germain, Main & 
Woolfson (1970)• Some thought should be given to the 
method of combining the weights as they are summed into 
the matrix• In the examples below, the x's were summed, but 
some other weighting scheme (for example, like the com- 
putation of a's in Germain, Main & Woolfson, 1970) might 
be more effective• A contribution from a quartet relationship 
with phase sum ¢~t to the matrix sum is computed as follows: 

tp~ + ~o 6 - tp2 + tp4 = ¢~1 with weight = gi; 

where ¢~1 is the phase sum (if this is the ith phase relation- 
ship)• From the equation, compute 

(~I ~01 ~ I  (~I 
= I, - - = - - I ,  -- I, 

~01 c~ 6 ~o 2 ~o4 
- I, 

~(P6 ~ 6  
-- 1, 

c~ 1 ~9~o 6 

= 0 .  
c%pj 

= 1 ,  

Thus the matrix contribution to the 

g g 0 - g  

g 0 g 

0 0 0 

- g 0 g 

0 0 0 

g 0 - g  
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